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A two-phase interactive goal programming procedure is described, which is potentially useful for resolving multiple-use
conflicts where multiple and conflicting objectives exist. In the analytical phase, the procedure locates efficient solutions that are
proportionally equidistant from the established goal targets. In the decision phase, these results are presented to the decision
maker who cither accepts the compromise solution provided by the analyst or revises the goal targets and enters into another
iteration. The important features of the procedure are (i) the decision maker is not required to explicitly specify any weights or
utility function to express preference among objectives; (if) the results of each iteration are presented to the decision maker
graphically, using value paths to allow easy visualization of the extent of compatibility or conflict among the diffcrent objcctives;
and (iii) the analyst explores efficient basic as well as nonbasic solutions in search of the best compromise solution. An illustra-
tive example is included to demonstrate the application of the procedure.
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17 : 1401-1407.

Cet article décrit un procédé interactif de programmation par objectif en deux phases pouvant servir a résoudre des conflits
polyvalents lorsque sont présents des objectifs multiples et conflictuels. Au cours de la phase analytique, le procédé localise les
solutions efficaces se situant a équidistance des objectifs préétablis. Au cours de la phase décisive, ces résultats sont présentés au
décideur qui peut soit accepter la solution de compromis st ggérée par I’analyste, soit réviser les objectifs et poursuivre une autre
intéraction. Les principaux aspects du procédé sont les suivants: (/) le décideur n’a pas spécifier une pondération ou une fonction
utilitaire quelconque pour exprimer sa préférence d’un objectif en particulier; ({i) les résultats de chaque itération sont présentés
au décideur sur graphiques, au moyen de trajectoires qui permettent de visualiser avec facilité le degré de compatibilité ou de
conflit parmi les divers objectifs; et (iii) I’analyse explore les diverses solutions cfficaces, ¢élémentaires ou non, en vue de
rechercher le meilleur compromis. L'article renferme un exemple, 2 titre d’illustration, pour bien montrer I’application qu’on
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peut faire de ce procédé.

Introduction

Multiple-use forest planning problems are often characterized
by conflicts among several incompatible objectives that are to be
optimized simultaneously. To aid forest planners and decision
makers in such environments, a variety of multiobjective pro-
gramming models have been developed. In forestry, the most
popular of these models is goal programming (Field 1973; Bell
1976; Rustagi 1976, 1985; Bare and Anholt 1976; Porterfield
1976; Dane et al. 1977; Schuler et al. 1977; Hansen 1977; Dyer
et al. 1979; Field et al. 1980; Kao and Brodie 1979; Mitchell
and Bare 1981; Hotvedt et al. 1982; Arp and Lavigne 1982;
Walker 1985; Mendoza 1986). Other multiobjective program-
ming methods applied to forestry problems are those of Bertier
and deMontgolfier (1974), Steuer and Schuler (1978), de Kluyver
et al, (1980), Mattheiss and Land (1984), Allen (1986), Harri-
son and Rosenthal (1986), Hallefjord et al. (1986), Glover and
Martinson (1987), Mendozaet al. (1987), and Bare and Mendo-
za (1987).

Although forestry applications of goal programming began to
appear in the mid-1970s. other multiobjective programming
techniques have been applied only recently. Further, a wide
variety of solution methodologies have been utilized in these
applications.' Yet, despite the many algorithms and approaches

'For more information on multiobjective programming techniques
see Lee 1972, Cochrane and Zeleny 1973, Zeleny 1974, Haimes et al.
1975, Zeleny 1976, Thiriez and Zionts 1978, Starr and Zeleny 1977,
Cohon 1978, Zionts 1978, Hwang and Masud 1979, Fandel and Gal
1980, Rafl’ and Zeleny 1980, Rietveld 1980, Morse 1981, Ignizio
1982, Zeleny 1982, Chankong and Haimes 1983, Evans 1984, Gal
1986, and Romero 1986.

[Traduit par la revue]

advanced to date, no single approach has emerged as “best” for
all types of multiobjective programming problems (Ignizio
1983).

Evaluative studies of several interactive multiobjective pro-
gramming methods have also reached this same conclusion
(Wallenius 1975; Reeves and Franz 1985; Gibson et al. 1987).
These studies, coupled with our own experience, have led us to
conclude that continued research in the development and testing
of interactive multiobjective programming methods is warranted.

As previously mentioned, a variety of multiobjective pro-
gramming techniques have been developed to aid decision
makers. Chief among the interactive approaches are algorithms
of Benayoun et al. (1971), Geoffrion et al. (1972), Zionts and
Wallenius (1976, 1983), Steuer (1976), Steuer and Choo (1983),
and Evren (1987). In addition, interactive goal programming
algorithms have been developed by Dyer (1972), Franz (1980),
Masud and Hwang (1981), and Ignizio (1981). These latter
methods all attempt to progressively articulate the preferences
of the decision maker by adjusting the target levels, weights,
and (or) rankings assigned to the deviational variables. How-
ever, different solution techniques are used to implement the
algorithms. Korhonen and Laakso (1986) present an interactive
multiobjective programming method that has some features of
our model, but does not utilize goal programming.

In this paper we describe and illustrate an interactive goal
programming algorithm that relies on the progressive revision
of aspiration (target) levels as alternate feasible solutions are
presented graphically to the decision maker. Special features of
the method are the examination of efficient basic as well as
nonbasic solutions and manipulation of the weights by the
analyst to force the solution in a direction specified by the
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decision maker. Explicit identification of weights by the deci-
sion maker, however, is not required. This contrasts with many
goal programming algorithms where manipulation of the weights
by the decision maker plays a pivotal role.

Throughout this paper we adopt Ignizio’s (1983) terminology:
(i) objectives are represented by mathematical functions of the
decision variables; (if) aspiration or target levels refer to a
specific value associated with a desired level of achievement
of an objective and are used to measure the achievement or
nonachievement of an objective; (iif) goals refer to an objective
in conjunction with an aspiration level; and (iv) constraints take
on the same mathematical appearance as goals but must be
rigidly observed. Thus, constraints are absolute goals that must
be satisfied to ensure feasibility.

Linear multiobjective programming

A linear multiobjective programming problem may be formu-
lated as

maximize

ckx forall k=1,2,3,...,p

subject to
Ax=ED

x=0

where x is an n-dimensional celumn vector of decision variables
(including slack and surplus variables); c* is a vector of coeffi-
cients for the kth objective; A is an m X n matrix of input/output
coefficients; and & is an m-dimensional column vector of con-
straint limits.

When faced with a multiple objective situation, the concept
of optimality, as used in single objective optimization, does not
apply. Instead, all feasible solutions are separated into two
mutually exclusive sets: (i) efficient (nondominated); and (i0)
inefficient (dominated) solutions. Efficient solutions have the
property that an improvement in the attainment of one or more
of the objectives is only possible by decreasing the achievement
of at least one of the remaining objectives. Because there are
usually many efficient solutions to choose from, the decision
maker must articulate a set of preferences that express value
judgments relating the importance of each identified objective.
Given these preferences, the decision maker selects a solution
that best meets the stated goals. Because of incompatibility
among objectives it is usually impossible to attain all goals
simultaneously. Thus, the decision maker chooses the best
compromise solution from the identified efficient solutions.

The size of the efficient sct depends on two things: (i) the
degree of conflict or incompatibility among objectives; and (if)
the shape of the feasible region. Everything else remaining
constant, for compatible objectives, the efficient region may be
confined to a small part of the feasible region but increases with
the increase in conflict among various objectives. If the objec-
tives are in complete conflict, the efficient region covers the
entire feasible region (including the interior).

The two-phase interactive goal programming method pro-
posed in this paper consists of analytical and decision phases.
Given the decision maker’s target level for each objective, the
analytical phase begins with the analyst finding an efficient
solution that is proportionally equidistant from each goal tar-

get.> This solution is presented to the decision maker in a
graphical form depicting the targets for each goal and thej;
attainment levels. We utilize the concept of value paths (Cohop
1978) to help the decision maker visualize these relationships,
Either the decision maker accepts this solution as the best
compromise, or revises the goal targets to make them more
realistic.

Any goal target that is set at a level higher than that achieveq
by the equidistant solution implies that the attainment of other
goals must be reduced if this goal target is to be reached. Using
interactive goal programming, the analyst reformulates the
problem and checks on the attainability of these targets. If they
are unattainable, a nonbasic solution, close to the goal targets, is
produced and the results are presented to the decision maker
graphically. The goal targets are then revised by the decision
maker in light of the analyst’s findings. The interaction between
the decision maker and the analyst continues until the decision
maker’s modified goal targets become attainable or the solution
from the last ileration is accepted as the best compromise
solution.

During the analytical phase, the search for the best compro-
mise solution is not limited to the efficient basic set but is
extended to the entire efficient surface, including nonbasic solu-
tions.? This is accomplished by introducing additional goals
with different target levels for each objective of interest.

At no time is the decision maker either swamped by a massive
amount of data or required to understand and interpret technical
information. Instead, to help undertake an informed revision of
the goal targets, the analyst provides the decision maker with a
graphical display of desirable goals and feasible levels from the
previous solutions. Especially important is the fact that the
decision maker is not asked to specify any weights or utility
function.

Interactive goal programming formulation

Unlikc conventional goal programming, in which the deci-
sion maker is required to specify target levels, weights, and, in
some cases, preemptive priorities, our method only requires the
decision maker to specify and revise target levels for each
objective after the analyst has provided sufficient information to
make an informed decision. Another difference is that more
than one goal is formulated for each objective. As mentioned,
this is done to provide the capability to generate nonbasic
solutions.? We suggest two to five of these additional goals for
each objective, but their number is best left to the discretion of
the analyst.

In the initial analytical phase, the analyst solves p simple
linear programming problems to determine the upper (Z**) and
lower (z*') value for each objective by maximizing each objec-
tive individually and examining the objective function value of
the remaining objectives. This is done without any input from
the decision maker with respect to target levels, weights, and
(or) priorities. These values serve two purposes. First, they
provide reference points for each objective, which are used by
the decision maker to initialize or revise target levels. Second,
the inverse of the range (Z** — z*') provides a set of relative

*Equidistant solutions are recommended because they provide the
maximum simultaneous attainment level for all goals and they illustrate
the degree of conflict among goals.

*While these arc basic solutions for the expanded goal programming
formulation, they are nonbasic in terms of the original goal sct.
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weights which the analyst uses in the initial goal programming
solution.

The proposed goal programming formulation of the multi-
objective decision problem is

minimize

e Zi(wk X df)

subject to
Ax=b
chx + dFT - dft = gk
xz0, df =0, df'=z=0

where w/ are the Archimedean weights, df~ and dj“ are
negative and positive deviational variables, respectively, and
g,’-‘ are the target levels associated with the jth level of the kth
objective. The simplex algorithm guarantees that at most only
one of the two deviational variables d ~ and d}* will be in any
basic solution.

We utilize Archimedean weights exclusively in our model,
but we do not normalize or scale the objective functions.
Following Gass (1987), who differs with Hannan (1986), we
believe that there is no need to normalize the objective function
coefficients because the norm is just part of the weight. It is the
calculation of the weights by the analyst (when deriving equi-
distant solutions) that is characteristic of our proposed procedure.

If g*is the target level specified by the decision maker for the
kth objective, the analyst computes gf as

g =g8"— (- Dot

where o* is an interval arbitrarily fixed by the analyst. As
pointed out earlier, this is done to generate nonbasic solutions in
the proximity of the decision maker’s target levels.

The analyst uses Z** as g* in the initial formulation and by
suitably adjusting the interval o* along with the weights, obtains
an efficient solution that is situated approximately at the same
relative distance between Z** and z*!. This solution serves two
purposes. First, the relative position tells the analyst something
about the degree of conflict among different objectives. Gen-
erally, the greater the degree of conflict, the closer the relative
solution values will be to 1/p times the range (Z¥* — zX7),
Second, this solution serves as a benchmark for the decision
maker in deciding upon realistic goal levels to use in the next
iteration.

In the decision phase, the results of the initial goal program-
ming run are presented to the decision maker in the form of a
value graph where the range (Z** — z*') is shown along with the
relative position of the achieved level of each objective. Based
on this information the decision maker is required to specify the
target level for each objective. If the decision maker is satisfied
with the proposed solution provided by the analyst, the process
stops. 1f not, the decision maker proposes new target levels.

Armed with the revised goal targets, the analyst initiates
another analytical phase involving the reformulation and solu-
tion of a goal programming problem. Three possible outcomes
can occur when this goal programming formulation is solved.
(/) The decision maker’s target levels are unachievable. In this
case the analyst finds a fcasible solution which is closest to the
goals. (/1) The decision maker's goals are attainable, but the
solution is not efficient. In this case the analyst identifies an
ctficient solution that improves at least one of the objectives.

(iii) The solution attains all target levels and is efficient. The
best compromise solution has been identified.

In the case of i or ii, the decision maker may wish torevise the
goal targets leading to another iteration of the process. This
continues until the decision maker’s target levels and the attained
levels more or less coincide. For a rational decision maker, this
should not take more than four or five cycles.

An example

A simple linear multiobjective problem is presented to illus-
trate how the process works. This problem involves two con-
straints and three objectives that are to be maximized:

maximize
Z, = 10X, + 13X,
Z, =X, + 6X,

Zs = 40X, + 25X, + 15X,

subject to
Xy + X, + X3 =100
25X, + 72X, + 45X5 = 5000
X1, X2, X520

Table 1 contains an abbreviated payoff table summarizing the
maximum and the minimum value for each objective when the
objectives are maximized one at a time. The range of objective
function values and the approximate relative weights used to
generate the initial goal programming solution are also given.
The attainment levels of different objectives when each objec-
tive is maximized individually are shown in Fig. 1. For exam-
ple, when maximizing objective 3, objectives 1 and 2 take on
values of 1000 and 100 units, respectively. From Fig. 1 it is
clear that objectives 1 and 2 are in total conflict while objective 3
is quite compatible with objective 1 but only weakly compatible
with objective 2.

The goal programming formulation of the original multi-
objective problem during the initial analytical phase is

minimize
2di” + 4d3T + 6di” + 8di” + 10dd ™ + 647
+12d37 + 18d3™ + 24d}™ + 30427 + di + 2d5~
+3dy” + 4d;” + 5ds~

subject to
X, + X, + X5 =100
25X, + 72X, + 45X; = 5000
10X, + 13X; + d!'™ —d!" = 1300
10X, + 13X3 + dy ™ — d " = 1100
10X, + 13X3 + di ™ — di* =900
10X, + 13X3+ di ™ — di* =700
10X, + 13X3 + di™ — di* = 500
X, + 6X, +di — dEt =420
X, + 6X, +d? — d#" =355
X, +6X>+di —di' =290
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X, +6X, +di™ —dit =225
X, +6X, +dZT —d2t = 160
40X, + 25X, + 15X5 + di™ — d}* = 4000
40X, + 25X, + 15X; + d3™ — d3* = 3550
40X, + 25X, + 15X; + di™ — d3* = 3100
40X, + 25X, + 15X; + di™ — d3* = 2650
40X, + 25X, + 15X5 + d3™ — d3* = 2200

In the initial goal programming formulation, five goals are
created for each objective with a fairly wide range of target
levels. This is done (i) to allow consideration of nonbasic
solutions as the best compromise solution; and (/i) to make
allowance for the conflict that may exist between different
objectives. The weights assigned to the deviational variables
associated with the multiple goals for each objective are pro-
gressively larger for smaller target levels. The objective is to
obtain solution values for different objectives at approximately
the same proportional distance from the target levels (see foot-
note 2).

The following solution values for the initial goal program-
ming formulation are obtained using a standard LP computer
program:

Z, = 660; Z5 = 3490
X] = 66, X3 =0

The upward sloping line in Fig. 2 displays this solution and
illustrates several important features. First, proportional depar-
tures from the three goal targets are not achieved using the
Archimedean weights incorporated into the present goal pro-
gramming model. This implies that the objective function
vectors are not orthogonal.* Further, it implies that the weights
and (or) target levels need to be manipulated (by the analyst)
if proportional departures are to be achieved. Second, the
solution indicates that the three objectives are not in total
conflict. This is illustrated by the percent departures of 51, 65,
and 80%, respectively, which measure deviations as a percent
of the maximum value for each objective over the range (Z** —
z*"). If the three goals are in total conflict, percent departures are
expected to be close to 33% of the range.

To produce an equidistant solution, it is necessary for the
analyst to further manipulate the weights and (or) target levels.
After repeated experimentation, the following goal program-
ming model involving four goals per objective is developed:

minimize
Td! ™ +10.5d3 ™ + 14d{™ + 17.5d} ™ + 8d?™ + 12d3™
+16d5™ + 20d; + 0.2dP~ + 0.4d3™ + 0.6d5~
+ 0.8d5~

subject to
X1+ X+ X3 =100
25X, + 72X, + 45X, = 5000
10X| + I3X3 + dll__ - d|l+ = 800
*Objective function vectors are orthogonal if their scalar product

vanishes. If not orthogonal, the weights (w/‘) do not serve their in-
tended purpose.

CAN. ). FOR. RES. VOL. 17, 1987

TasLE | Abbreviated pay-off table for sample problem
Objective Max. Min. Range  Rel. wt.*
Z, 1300 0 1300 2
Z; 417 0 417 6
Zy 4000 1500 2500 1

*The relative weights are approximately proportional to the inverse of the
range of the attained levels for each objective. For example, for Z, we have
(1/417) X 2500 = 6.

Objective Objective Objective
#1 #2 #3
1300 417 4000
T 7\ i

\‘\ / \\ ; /

1000, / Mot

X \ / \(
\ ‘:\ / /.' \\
% I AN
/ W ; $1736
Y 4 41500
/ ‘\\ N\, .., “;'
// v foo
/ \
A k' J_

FiG. 1. Attainment levels of the three objectives when each objec-
tive is maximized individually.
10X, + 13X; + 44~ — dit =750
10X, + 13X5 + di™ — dit =700
10X, + 13X5 + d{ ™ — d{* =650
X, +6X, +dif” —dft =280
X, +6X, +d¥ — dit =265
X) + 6X, +di™ — dit =250
Xi +6X, +di™ — dit =235
40X, + 25X, + 15X; + dP™ — dfT = 3100
40X, + 25X, + 15X5 + d3~ — d3" = 3000
40X, + 25X, + 15X5 + d3~ — d3$t = 2900
40X, + 25X, + 15X5 + di™ — dit = 2800
The corresponding solution values are
Z, =750; Z, = 237.3; Z> = 2900;
X, =43.0; X, =324, X3 =246

This solution is displayed in Fig. 2 as a horizontal line, with
associated percent departures of 58, 57, and 56%, respectively,
which measure deviations as a percent of the maximum value
over the range (Z,* — z*'). The Archimedean welghts and
target levels required to produce this equidistant solution arc
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Objective Objective Objective
#1 #2 #3
1300 417 4000

T -= T
First
solution’,aa3490
s -
270 -
/”’"’/
T7500=cc=cc o il
seo,’” 237 Second 2900
solution
) [ 1500

FiG. 2. Attainment levels of the three objectives in the first iteration
of the analytical phase.

dramatically different from those used in the first goal program-
ming formulation. Although an equidistant solution is shown,
the percent departures are not one third of the range. Thus, it is
clear that the three objectives have some degree of compatibil-
ity. The horizontal line further indicates the maximum level of
achievement that can be expected for the three goals when
considered simultaneously.

Figures 1 and 2 provide sufficient information to enable the
decision maker to specify realistic goal levels for the next
iteration, thus completing the initial analytical phase. At no time
has the decision maker been asked to specify weights associated
with deviational variables, thus avoiding this aspect of many
goal programming algorithms.

Suppose that after deliberation, the decision maker suggests
goal levels of 800, 250, and 3600, respectively, for the three
objectives. After manipulation of the weights, the number of
goals and their target levels, and with the aim of more or less
proportional departures from these goals, the analyst formulates
the following problem:

minimize

7d]™ +10.5d5 " + 6df™ + 1243~ + 4P~ + 2d5°
subject to

X, + X, + X3 =100

25X, + 72X, + 45X; = 5000

10X, + 13X; +d!~ —d!* =800

10X, + 13X, +di ™ —dit =750

X, +6X, +di — dit =250

X, +6X, +di™ —dit =235

40X, + 25X, + 15X; + d™ — 4" = 3600

40X, + 25X, + 15X, + d3™ — ds* = 3500

The corresponding solution values are

Objective Objective Objective
#1 #2 #3
1300 aur 4000

43600
Targets ,~,-23500
. ~ l"
e

-

. 250 "/"' .
ggg:h;:..._.._.._....{,x Attainment
__________ 4 levels

0 0 1500
FiG. 3. Goal targets and corresponding attainment levels for the
three objectives in the revised formulation.

Z, =750, Z, = 227;
X, = 69.5; X, =26.3;

Comparing this solution (see Fig. 3) with the previous solu-
tion, where proportionally equidistant levels of attainment are
realized, shows that the achievement of objective 1 remains at
750 units, objective 2 has decreased 10 units, and objective 3
has increased 600 units. The decision maker must decide if this
solution is superior to the previously displayed solution. With
all goals given equal importance as effected by attempting to
achieve proportionally equidistant deviations, the analyst has
provided sufficient information to enable the decision maker to
revise target levels if this is deemed necessary.

As is obvious from the above formulation, the analyst is free
to use any number of goals, any convenient step size, and any
weights for the purpose of ensuring more or less proportional
departures from the stated targets. Further, the decision maker
may choose not to try to attain proportional deviations from
target levels, in which case the analyst can produce other
compromise solutions for evaluation.

It should be clear that other combinations of weights and (or)
target levels for the goals may lead to a different solution.
However, such solutions will not depart significantly from the
above solution as long as the analyst uses the same criterion of
distance from the stated goals.

At this point in the analysis the decision maker should have a
good understanding of realistic target levels and the implicit
trade-off among objectives. Thus, the search process can be
terminated by accepting one of the solutions proposed by the
analyst or the goal targets can be revised and another cycle of
analysis can be initiated. A rational decision maker should be
able to identify the best compromise solution within four to five
iterations, depending on the degree of incompatibility among
goals.

Z5 = 3500,
X3 =4.2

Discussion

The interactive goal programming procedure outlined here is
a straightforward approach for helping the decision maker
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identify the best compromise solution from among all possible
efficient solutions. The mechanics of the process are relatively
transparent and the decision maker is not asked to specify a
preference structure in the form of weights and (or) a ranking of
objective functions. Lastly, the graphical presentation of results
makes it very easy for the decision maker to better understand
the interdependencies and conflicts among objectives and thus
be able to adjust goal levels to make them more realistic and
attainable. The decision maker still must make a value judge-
ment regarding the combination of levels for different objec-
tives that are ultimately considered acceptable.

In formulating the goal programming problem, the analyst
has considerable flexibility as long as solutions are generated
that reflect the decision maker’s wishes. To some extent the
computational burden depends upon how realistic the target
levels are and on the degree of conflict among different objec-
tives. The magnitude of the trade-off among objectives is a
direct function of the level of conflict.

The salient features of this approach are (i) use of multiple
goals for each vbjective to facilitate the generation of nonbasic
solutions, and also allow a more equitable distribution of the
shortfalls (from specified targets) among different objectives;
(if) manipulation of weights and target levels for controlling the
distribution of the shortfall among different objectives.

A maximum of only five efficient basic solutions are utilized
in the example presented here. However, the number of possible
efficient solutions, both basic and nonbasic, is infinitely large.
In view of the overwhelmingly large number of nonbasic
solutions to the problem, it is very likely that the decision
maker’s preferred solution will also be nonbasic. Therefore, it is
imperative that the search procedure be flexible enough to
generate both types of efficient solution.

The reporting of results basically duplicates the method
proposed by Cohon (1978) and Zeleny (1982). This graphical
display of results using value paths shows both the target levels
and the most optimistic achievable levels given those targets.
This type of display facilitates the decision maker’s revision of
the targets for the next iteration. Perhaps it will also make it
easier for a rational decision maker to accept a less than perfect
solution as the best compromise solution.
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